Organized Behavior Classification of Tweet Sets using Supervised Learning Methods
نویسندگان
چکیده
During the 2016 US elections Twitter experienced unprecedented levels of propaganda and fake news through the collaboration of bots and hired persons, the ramifications of which are still being debated. This work proposes an approach to identify the presence of organized behavior in tweets. The Random Forest, Support Vector Machine, and Logistic Regression algorithms are each used to train a model with a data set of 850 records consisting of 299 features extracted from tweets gathered during the 2016 US presidential election. The features represent user and temporal synchronization characteristics to capture coordinated behavior. These models are trained to classify tweet sets among the categories: organic vs organized, political vs non-political, and pro-Trump vs pro-Hillary vs neither. The random forest algorithm performs better with greater than 95% average accuracy and f-measure scores for each category. The most valuable features for classification are identified as user based features, with media use and marking tweets as favorite to be the most dominant.
منابع مشابه
Improving Twitter Sentiment Classification via Multi-Level Sentiment-Enriched Word Embeddings
Most of existing work learn sentiment-specific word representation for improving Twitter sentiment classification, which encoded both n-gram and distant supervised tweet sentiment information in learning process. They assume all words within a tweet have the same sentiment polarity as the whole tweet, which ignores the word its own sentiment polarity. To address this problem, we propose to lear...
متن کاملAnt Based Semi-supervised Classification
Semi-supervised classification methods make use of the large amounts of relatively inexpensive available unlabeled data along with the small amount of labeled data to improve the accuracy of the classification. This article presents a novel ‘self-training’ based semi-supervised classification algorithm using the property of aggregation pheromone found in natural behavior of real ants. The propo...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملDiscriminating Between Closely Related Languages on Twitter
In this paper we tackle the problem of discriminating Twitter users by the language they tweet in, taking into account very similar South-Slavic languages – Bosnian, Croatian, Montenegrin and Serbian. We apply the supervised machine learning approach by annotating a subset of 500 users from an existing Twitter collection by the language the users primarily tweet in. We show that by using a simp...
متن کاملSemi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1711.10720 شماره
صفحات -
تاریخ انتشار 2017